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ABSTRACT /

The estimation of a variance ratio = 2 1 i"studied under

restrictions E > 0 or e < e We assume first thast we observe

U )i~ .2 ,independent. -A Bayesian viewpoint is, taken. We then
in

assume additional information on . is available in the form of

an independent observation from a noncentral X2 distribution. A
natural application arises when the W. are sums of squares in a
variance components model.

1. LiRODUCTION

In this paper we consider the estimation of a variance ratio
2

over a truncated parameter space. Suppose that U. 2

1

i = 1,2, independent, n1 > 5, n2 > 3. Let T 2 /. Under the

scale invariant quadratic loss function

L(ea) -2 - )2 (.)

the estimator
n I- -_ 2

-0 n + 2 U(

is best invariant in the class based upon U2/U . In fact, using

the approach of Brown and Fox (1974), it is straightforward to

establish that is admissible under (1.1). (See Gelfand and
0

Dev (1986) for details.) Suppose we restrict < 7 0 or

- S0" Such restrictions arise naturally when, for example, the

U. are sums of squares in a variance components model. Then 60U1



is no longer admissible. A usual approach to dominating 60 is to

restrict 60 in the same fashion that 6 is restricted. Such esti-

mators are no longer smooth, hence inadmissible. From a Bayesian

viewpoint, such an approach is essentially taking the posterior

mode resulting from a prior over the restricted space. An alter-

native is to take the posterior mean. Such estimators will be

admissible, but exhibit strange behavior. In Section 2 we look

into all of these issues drawing upon ideas of Hill (1965) and

recent work of Loh (1986).

A broader setting presumes that we have additional informa-
2 (ii)2

tion about the T. in the form of V. u mX or V i'

1~~~ 1 ix

i = 1,2, V. independent of U. and of each other. Now 60 is no' 1 10

longer admissible for 6 under (1.1). An example is that of X..
- )2. 1

N(Ui9,ti), i = 1,2, j = 1,...,ni, with U. = (X..-X. Then1 1) 1
(1.2) is not admissible for 6. In fact, (XI,X 2,UIU 2) is a

version of the complete, sufficient statistic and the X. (hence
-21
Xi) contain information about T.. (Gelfand and Dey (1986) dis-1 1

cuss this example at length.) In this broader setting, we again

seek to estimate a restricted 6. This problem is the issue of

Section 3, drawing upon ideas dating to Stein (1964), Brown (1968)

and Klotz, Milton and Zacks (1969).

The seminal paper by Katz (1961) on admissibility for esti-

mators of restricted parameters is inapplicable here since the

distribution of W = U 2/U I does not belong to the exponential

family.

2. THE BAYESIAN APPROACH

In the spirit of variance components models, let T1 = an,1

+ bri 2 , 2 = cn1 + dn2 where ni > 0, a,b,c,d > 0 and r = ad - bc

0 0. We necessarily have 01 < a < 82 where e1 = min(a- c, b- d),

P2 = max(a-1c, b- d). If a or b = 0 (c or d = 0), we obtain a

one-sided restriction below (above).

Example: In the balanced one-way ANOVA, i.e., Yij = 1. + a. +22 1 1ij

i = ,...,I, j = 1,...,J, with a. , N(O, 2), C. . n N(0,2 ) all' '1 2 a Ij e= . 1i-i2 U2 a= JZ(y. _y )2

independent, we have U1  2 iY JiU2. .. I'

-(J-1), n2 = I-1,n a 2 n= 02, a = I, b = 0, c = 1, d = J

and e > 1.

2



We now develop the relevant distribution theory. We assume
-I

a prior over nl, p 2 of the form (n 1i).I(T 2) with ni having a

gamma distribution, i.e.,

-(k.+l) -,./n.
S 1 1

r(nl) n. e , i = 1,2. (2.1)

Hill (1965, p. 811) argues for the plausibility of the independence

assumption in the context of variance components. The resulting

prior for T1 , r2 on the domain e11 1 T2 f 62T2 is

-(k 1+k2+2) -(k1+1) -(k2+1)
(- I OT 2 

) -r (d -bT 2) (at2-cTI )

r I 1 (ai2-ci1 )+X2 (d- -b-2) (
Sexp ( -b 2 1)(a2 (2.2)

The noninformative prior on n. arises as the limiting case

k. = 0, X i = 0 in (2.1) and induces [(di 1 -bi 2 )-(at 2 -cr 1 )] as the

prior for T1 "r2. This differs from the noninformative prior of

Box and Tiao (1973, p. 253), (T * 2)-1 which cannot arise from

independent n. unless the transformation from i. to T. is trivial

and has been criticized in the variance components case for its

dependence in the n space upon the sample size J.

From (2.2)

kl k2-lk+k2-2

( a b -c ) ( d - b e ) r k 1 k 
( 2 .3

k+k 2 , 1 < e < 62 (2.3)

(X 1(ae-c) + X 2(d-be)) 
1 2

i.e., e follows a generalized Beta distribution. Two cases of

(2.3) which we study in greater detail are:
k -1

(G-eO)

k( )-l >- (2.4)Tr( )-k2-1 ' -- 6 0 (24

(1+),(e-e 0)2

i.e., A6(-6 0 ) follows a nonstandardized F distribution or limit

thereof and

kl-I k2-1

0) 1 (e0o-e) 2 o < e < e0, (2.5)

i.e., 6/70 follows a Beta distribution or limit thereof.

Under (2.1) the posterior distribution of 6 given the data

is

3



(& UlU 2)
nn2 n "2

(d-be) 2 2 -(a6-c) 2 1-r 1 2-
n 2  n 1+n 2_ (U e+U (d-be)(ae-c) + +k +k

e2 1 2 2 X1(ae-c)+X 2(d-be)) 2 1 2

(2.6)

Since (2.6) is analytically intractable, we consider instead

the simpler posterior of 61W = U1 /U2. The distribution of Wle is

a nonstandardized F, i.e., nI nI
nl+n 2  1 -1

r ( ( -- n ) 2 WT
f(wle )  n,2n=-v2 (2.7)2 2

2(f- 2(- (l+Ow)- 2

whence under (2.1)

kl-I k2-1 n1 /2 k +k2-2

C(61w) (ae-c) (d-be) 6 r
k +k 2  nl+n 28

[ 1 (a&-c)+X 2 (d-be)] (1+6w)-

In the special case (2.4) with A = e01- we obtain
n

(-e0o)k1- 1 " - (kl+k 2 2

I(evw) 0 1+n2  , e > 6O . (2.9)

(1+6w) 2

In the special case (2.5), we obtain

nI
e T +kl-i( -6 k 2- 1
e (eo-e)2

(6Iw) n 1 0 < e < e 0  (2.10)

(1+ew) 2

The case kI = 1, k2 = 0 in (2.9) or k I = 0, k = 1 in (2.10)

produces the posterior associated with the Box-Tiao prior.

Turning to estimation of 6, we first consider the posterior

mode in (2.9) and (2.10). If k < 1 in (2.9) or k2 < 1 in (2.10),

the mode occurs at e0* If k1 > 1 in (2.9) or k2 > 1 in (2.10), the

the posterior need not be unimodal. However, if in (2.9), kI

and k2 < (n -2)/2 , we obtain a unique mode at

4



1-n =-2(k 2+1)
dk2,e 0  max(6,W- 1 n 2+2(k 2+)). (2.11)

If in (2.10), k2 = 1 and k1 < (n 2+2)/2, we obtain a unique mode at

= nl+2(kl-1)

kle min(60,W- 1212(kl1 -1) (2.12)
1,~e0 n22k 1-1

Note that kI = 1 in (2.4), k2 = 1 in (2.5) asserts prior informa-

tion concentrated near e0 *

As remarked earlier (2.11) and (2.12) are not admissible.

In particular for k2 < (n +n 2-2) (n 2+2), max(eo6 0) , 6 0 as in
(1.2) dominates (2.11) using the fact that 60 is best invariant in

the unrestricted problem and Lemma 1 of the appendix. However,

min(609 0 ) does not dominate (2.12) by using the same argument as

in Loh (1986, p. 700).

Consider now formal Bayes rules extending the loss (1.1) to
2

L(e,a) = ec(6-a) (2.13)

where c is arbitrary.

We recall that if 0 < a < b

f 0  6a-- de = -a r(a)r(b-a) I (a,b-a) (2.14)
0 (lew)b r(b) n0

where I (a,b-a) is the incomplete Beta function evaluated atno0  -

no = (l+ Ow) -leow.

Consider first the case 6 > eO . Under (2.9) with loss

(2.13), let m. = n /2 +c+l-(k +k 2)+j and j =(n +n22 -m... If k,

is a positive integer and m 0 > 0 using (2.14), we can obtain the

unique Bayes rule as

k-i k 1- 1 -M.

E 1)e 3Jw Jr(mj+l)r(tj-l) lo(j-1,m.+l)

W 1 k= jk C-I k1- 1 -M.

I 1 )e0Jw Jr(m.)r(k )I (k ,m.)
j=O 0 . j 0  jJ -

(2.15)

Similarly, if 0 < e < 0. under (2.10) with loss (2.13), let

mj = n1 /2 +c+k1 +j and 9j =(n l+n2 )/2 -mj. If k2 is a positive

5



integer using (2.14), we can obtain the unique Bayes rule as

"kl,k 2 ,c, 0

k2-1 k-i -m.Eij- ( J")eo w Jr(mj+l)r(uj-l)Ino(mj+l,z.-l)

-i 1 _0 __ 1 3 3 b no= 1W

k2-1 k2-i -M.z )eJw Jr(m.)r(£.)i (m.,E.)
j=O J 0 3 r 0 3 J

(2.16)

Remark 1: Expression (2.15) depends upon c and k2 through

c - k 2  so we can denote it by 6k '  expression (2.16)2 2 k 1 2 ) ' 6 0
depends upon c and k through c + kI = Y1 so we can denote it by

-y' k2 ' e0"

Remark 2: Computation of (2.15) and (2.16) requires calculation of

the incomplete Beta functions only for, say, the denominator by

using the well-known relationship (see, e.g., Abramovitz and

Stegun, 1965)
r(c+d) d-lxr(c+l)r(d) x(-~ -

I x(c~l, d-1) =I x(c,d) -r~~ d 1x

Remark 3: Using Lemma 2 of the appendix, we may show that

k 1-l1k11l- k.-i
z ( . ) . 1 -

l 10 3 J=i : > F0Wlii'n '0 klI-i 0-
ki3 k, 2 30 6 0k 1 k 1-0I (1 )j )

j2..j=O J

k2-1 k2-1 J -I
. . )e (m +l)

_- j= 0 j
lir 6 1, k2_ k < e
W0 Yk 2 3 k 2-1 k -1 0*

7z ( 2 j )e 3l~ j -

j=0 1 0

In this sense the behavior of 6, 6 differs strikingly from

that of d, d as W approaches the extremes of its domain. The latter

have positive probability of equaling 00. Loh's Theorem 3.1 shows

a special case of this.

Remark 4: Paralleling (2.11) and (2.12) when kI a 1, we obtain

6



n n2

Sn2 1 - , 12 1, 2

1 n 1 + 2 -yW1 1 ( n 1 + 2 1 2 1
) 0 n 2-2 ) n1 n 2

lY

rT l' 2 1

The estimator (2.15) and (2.16) are admissible under (1.1)

within the class of rules based upon W. However, admissibility in

the larger class based upon Ul. U 2 (equivalently W, V ) is a more

difficult question. The approach of Brown and Fox (1974) mentioned

* after (1.2) is not applicable to a restricted parameter space.

3. ADDITIONAL INFORMATION ABOUTt

n I  n2

Recalling the notation of Section 1, suppose V. 'e (Ii)

WE have the following results whose proof is essentially contained

in Stein (1964) or Strawderman (1974).

Result 1: In estimating 2 under squared error loss,

minl,(n~~- 2 +2) ' ) (rrt+, U2 +V 2 )) dominates (n 2+2)

miner(1.*2) 2' 2o -1lcal 2oarsrce prmtrsae

Result 2: In estimating AL under squared error loss,
Realnin th1 , ( o-4)( + dominates (n .1 4) U

1

1 1 1 1 1

inSten 164) (174

Reslt : I esimaing 2 nde sqare eror oss



2
If instead V. ".I (T. + 4i) M, Results 1 and 2 still hold.

1 .
That is, we may think of V.i arising from Vilz i = z. i 2ix m ioz i

where Z. n (4i/2E i)." Since Results 1 and 2 hold regardless of

Z. they hold unconditionally. Klotz, Milton and Zacks (1969,

p. 1392) allude to this idea in a special case.

Taking these ideas further to the estimation of an unrestrict-

ed variance ratio using essentially the proof of Theorem 3.1 in

Gelfand and Dey (1986), we can show

Result 3: In estimating 6 under squared error loss,
(nl-4) (U2+V 2)

L = in(6 1 4 2 +V2 ) < 6 dominates 6

U2  m2+n-4

= max(60, 2 " 1 1 > 6 dominates 6
n2+2 U1+V -0

By Lemma 1 of the appendix, we have immediately that with

squared error loss under the restriction e > e03

max(L,F-0 ) dominates max(60,60) (3.1)

and under the restriction 0 < e < 0,

min(Le , 0) dominates min(6 0,60). (3.2)

In Gelfand and Dey other estimators (e.g., using ideas of
Brown, 1968) which dominate 60 in the unrestricted problem are

given. These estimators may be used to obtain results similar to

(3.1) and (3.2). We omit the details

APPENDIX

Lemma 1: Under squared error loss

(a) If T dominates U on e0 < 6 and T < U, then max(T,6 0 )

dominates max(U,6 0) on e0 < 6.

(b) If T dominates U on 0 < 6 < 0 and T > U, then min(T,e0)

dominates min(U, ) on 0 < < 8

Proof: The proof is essentially that of a lemma in Klotz, Milton

and Zacks (1969, p. 1394).

Lemma 2: In the notation of (2.14),

lim w-a I (a,b-a) = r(b) 6a (A.1)
w+0 n0 r(a+l)r(b-a) 0

8



or equivalently

lim wa Ir(a,b-a) r(b) -a (A.2)

W* - 0r(a+l)F(b-a) o (02

Proof: Since the limit as w - 0 of the left-hand side in (2.14)

is ea/a, we obtain (A.1). But (A.2) follows by replacing w with
-1 001

w and e0 with e0  in (A.1).
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